Cold Comfort
Part 2: Harnessing Vermont's frigid winter to keep food cool and
electricity usage down.
BY BEN HEWITT
Photography by Ben Stechschulte
Published in the March, 2006 issue.
The author built this cold box to replace his
refrigerator during the winter--saving about 1 kilowatt-hour every day.
|
There's a growing online community of people trading ideas on alternative
energy, and I was curious to see if anyone else had built such a box. When
I Googled "building insulated cold box," I found information on the
corrosive properties of zinc, plans for constructing a cat shelter and a
treatise on building a "kegerator." Interesting stuff, all, but not what I
was looking for. It's surprising, considering the amount of ink--or just
as often, kilobytes--spilled by energy misers discussing the intricacies
of solar panels and efficient light bulbs. I even joined a Yahoo group
called Refrigerator Alternatives and heard about another interesting idea.
(See "Chest Fridge," below.) But when it came to cold boxes, we seemed to
be pioneers.
Penny and I designed a simple box, sized to fit against the exterior casing of the door. I prebuilt the three walls using 2 x 4s and sheathed them with 1/2-in. plywood. (The dimensions are 3 ft. wide x 16 in. deep x 7 ft. high.) I cut 2-in. rigid foam insulation, aka "pinkboard," to fit snugly between the 2 x 4s, then used expanding foam insulation to fill in any gaps between the pinkboard and the frame. Over the plywood, I installed vertical shiplap siding, mostly because it's what I had lying around and because it matched the natural wood clapboards on our house. The interior of the cold box was sized to fit conventional fridge racks (25 in. wide x 16 in. deep), which I scored for free from a local repair shop. I lined the interior with 5/16-in. cedar paneling, attaching it to surface-mounted nailers on the inside of the walls to increase the dead air space. I coated the cedar with a water-based polyurethane for moisture resistance and easy cleanup. I also fitted the box with two 24-volt DC fans that are thermostatically controlled. The fans are mounted on the outside of the box; PVC pipe extends from each fan through the plywood, insulation and cedar to the inside. When the temperature in the "fridge" gets too high, the fans kick on, one sucking in cold air near the bottom of the box, the other exhausting warm air at the top. (Eventually, I'll install an override thermostat so that the fans won't start when the outside air temp is above 40.) We went with DC fans and wired them directly to our battery circuit (via a small hole drilled in our box sill) so that we could cut our inverter and its associated efficiency loss out of the loop. I stapled a layer of sill seal to the frame of the cold box to keep out the drafts. I attached the unit to the house with 3-in. PrimeGuard screws--to remove or install it, all I need is a screw gun. Once the porch is in place, I'll mount casters on the bottom so that I can roll it in and out of position. I'll take off the temporary roof I built over the cold box after the porch roof is built. I figure the whole box has an R-value of about 12: The pinkboard has an R-value of 10; the other materials and 1-1/2 in. of air space supply the rest. The box hasn't been in operation long enough to give a truly educated appraisal (stay tuned to my blog on PopularMechanics.com), although one real downside has reared its head: There's no freezer and, thus, no storage space for cookie dough ice cream. But the primary goal has been met. Since installing our cold box, we've kept our perishables cool. And our generator silent. |
|
Read PM's Energy Family Blog written by Ben Hewitt.
To subscribe or visit go to: http://www.popularmechanics.com/