Device Burns
Fuel with Almost Zero Emissions
June 28, 2006
Source: Clean Edge News
Georgia Tech
researchers have created a new combustor designed to burn fuel in a wide
range of devices with next to no emission of nitrogen oxide and carbon
monoxide, two of the primary causes of air pollution.
The device has a simpler design than existing state-of-the-art
combustors and could be manufactured and maintained at a much lower
cost, making it more affordable in everything from jet engines and power
plants to home water heaters.
"We must burn fuel to power aircrafts and generate electricity for our
homes. The combustion community is working very hard to find ways to
burn the fuel completely and derive all of its energy while minimizing
emissions," said Dr. Ben Zinn, Regents' professor, the David S. Lewis
Jr. Chair in Georgia Tech's Guggenheim School of Aerospace Engineering
and a key collaborator on the project. "Our combustor has an
unbelievably simple design, and it would be inexpensive to make and
inexpensive to maintain."
Attaining ultra low emissions has become a top priority for combustion
researchers as federal and state restrictions on pollution continuously
reduce the allowable levels of NOx and CO produced by engines, power
plants and industrial processes.
Called the Stagnation Point Reverse Flow Combustor, the Georgia Tech
device significantly reduces NOx and CO emissions in a variety of
aircraft engines and gas turbines that burn gaseous or liquid fuels. It
burns fuel with NOx emissions below 1 parts per million (ppm) and CO
emissions lower than 10 ppm, significantly lower than emissions produced
by other combustors.
The project's initial goal was to develop a low emissions combustor for
aircraft engines and power-generating gas turbines that must stably burn
large amounts of fuel in a small volume over a wide range of power
settings (or fuel flow rates). But the design can be adapted for use in
a variety of applications, including something as large as a power
generating gas turbine or as small as a water heater in a home.
"We wanted to have all the clean-burning advantages of a low temperature
combustion process while burning a large amount of fuel in a small
volume," Zinn said.
The combustor burns fuel in low temperature reactions that occur over a
large portion of the combustor. By eliminating all high temperature
pockets through better control of the flow of the reactants and
combustion products within the combustor, the device produces far lower
levels of NOx and CO and avoids acoustic instabilities that are
problematic in current low emissions combustors.
To reduce emissions in existing combustors, fuel is premixed with a
large amount of swirling air flow prior to injection into the combustor.
This requires complex and expensive designs, and the combustion process
often excites instabilities that damage the system.
But Georgia Tech's design eliminates the complexity associated with
premixing the fuel and air by injecting the fuel and air separately into
the combustor while its shape forces them to mix with one another and
with combustion products before ignition occurs.
To
subscribe or visit go to:
http://www.cleanedge.com/
|