Studying Rivers For Clues To Global Carbon Cycle
2/12/2008 Evanston, IL
In the science world, in the media, and recently, in our daily lives, the
debate continues over how carbon in the atmosphere is affecting global
climate change. Studying just how carbon cycles throughout the Earth is an
enormous challenge, but one Northwestern University professor is doing his
part by studying one important segment -- rivers.
Aaron Packman, associate professor of civil and environmental engineering in
the McCormick School of Engineering and Applied Science, is collaborating
with ecologists and microbiologists from around the world to study how
organic carbon is processed in rivers.
Packman, who specializes in studying how particles and sediment move around
in rivers, is co-author of a paper on the topic published online in the
journal Nature Geoscience.
The paper evaluates our current understanding of carbon dynamics in rivers
and reaches two important conclusions: it argues that carbon processing in
rivers is a bigger component of global carbon cycling than people previously
thought, and it lays out a framework for how scientists should go about
assessing those processes.
Much more is known about carbon cycling in the atmosphere and oceans than in
rivers. Evaluating large-scale material cycling in a river provides a
challenge -- everything is constantly moving, and a lot of it moves in
floods. As a result, much of what we know about carbon processing in rivers
is based on what flows into the ocean.
“But that’s not really enough,” Packman said. “You miss all this internal
cycling.”
In order to understand how carbon cycles around the globe -- through the
land, freshwater, oceans and atmosphere -- scientists need to understand how
it moves around, how it’s produced, how it’s retained in different places
and how long it stays there.
In rivers, carbon is both transformed and consumed. Microorganisms like
algae take carbon out of the atmosphere and incorporate it into their own
cells, while bacteria eat dead organic matter and then release CO2 back into
the atmosphere.
“It’s been known for a long time that global carbon models don’t really
account for all the carbon,” Packman said. “There’s a loss of carbon, and
one place that could be occurring is in river systems.” Even though river
waters contain a small fraction of the total water on earth, they are such
dynamic environments because microorganisms consume and transform carbon at
rapid rates.
“We’re evaluating how the structure and transport conditions and the
dynamics of rivers create a greater opportunity for microbial processing,”
Packman said.
Packman is the first to admit that studying microorganisms, carbon and
rivers sounds more like ecology than engineering. But such problems require
work from all different areas, he said.
“We’re dealing with such interdisciplinary problems, tough problems, so we
have to put fluid mechanics, transport, ecology and microbiology together to
find this overall cycling of carbon,” he said. “People might say it’s a
natural science paper, but to me it’s a modern engineering paper. To
understand what’s going on with these large-scale processes, we have to
analyze them quantitatively, and the tools for getting good estimates have
been developed in engineering.”
Packman was introduced to the co-authors of the paper -- ecologists who
study how dead leaves and soil drive stream ecology and who come from as far
away as Spain and Austria -- about 10 years ago through the activity of the
Stroud Water Research Center in Pennsylvania.
Since then, they have collaborated on many similar projects around river
structure and transport dynamics. They are currently working on a project
funded by the National Science Foundation on the dynamics of organic carbon
in rivers and trying to understand how carbon delivered from upstream areas
influence the ecology of downstream locations.
“The broadest idea is really part of global change efforts to understand
carbon cycling over the whole Earth, which is an enormous challenge,”
Packman said.
SOURCE: Northwestern University |