| Arctic Pollution's Surprising History 
    3/25/2008
 
 Study: Early explorers saw particulate haze in late 1800s
 
 Scientists know that air pollution particles from mid-latitude cities 
    migrate to the Arctic and form an ugly haze, but a new University of Utah 
    study finds surprising evidence that polar explorers saw the same phenomenon 
    as early as 1870.
 
 “The reaction from some colleagues – when we first mentioned that people had 
    seen haze in the late 1800s – was that it was crazy,” says Tim Garrett, 
    assistant professor of meteorology and senior author of the study. “Who 
    would have thought the Arctic could be so polluted back then? Our 
    instinctive reaction is to believe the world was a cleaner place 130 years 
    ago.”
 
 The study will be published soon in the March 2008 issue of the Bulletin of 
    the American Meteorological Society.
 
 By searching through historic records written by early Arctic explorers, 
    Garrett and his collaborator Lisa Verzella, former undergraduate student at 
    the University of Utah, were able to find evidence of an aerosol “dry haze” 
    that settled onto the ice to form a layer of grayish dust containing 
    metallic particles. The haze and dust were likely the byproducts of smelting 
    and coal combustion generated during the Industrial Revolution.
 
 “We searched through open literature, including a report in the second issue 
    of the journal Science in 1883 by the famous Swedish geologist Adolf Erik 
    Nordenskiold, who was the first to describe the haze,” says Garrett. “We 
    also looked through books describing Arctic expeditions that had to be 
    translated from Norwegian and French.”
 
 The historic accounts show that more than 130 years ago, the Industrial 
    Revolution was “already darkening the snow and skies of the far North,” 
    Garrett says.
 
 History of Arctic Pollution
 Garrett and Verzella say the first report of Arctic haze pollution usually 
    is credited to a U.S. Air Force meteorologist J. Murray Mitchell, who in 
    1957 described “the high incidence of haze at flight altitudes” during 
    weather reconnaissance missions from Alaska over the Arctic Ocean during the 
    late 1940s and 1950s.
 
 Mitchell was credited in the 1970s by Glenn Shaw from the University of 
    Alaska, Fairbanks, and his collaborators Kenneth Rahn and Randolf Borys, 
    from the University of Rhode Island, who were the first to discover the haze 
    contained high levels of heavy metals, including vanadium, suggestive of 
    heavy oil combustion.
 
 In a later study, Rahn and Shaw said: “Arctic haze is the end product of 
    massive transport of air pollution from various mid-latitude sources to the 
    northern polar regions, on a scale that could never have been imagined, even 
    by the most pessimistic observer.”
 
 Since humans had been generating aerosol pollution long before 1950 – 
    namely, since sometime after the advent of the Industrial Revolution in the 
    late 1700s – it made sense to Garrett that pollution generated from earlier 
    times also might have made it to northern latitudes from Europe, Asia and 
    North America.
 
 “I thought that pollution had to be observed in the Arctic prior to 1950, so 
    I decided to find out if that was true,” says Garrett. So he hired Verzella 
    to search historic records to determine if there was written evidence of 
    early Arctic pollution.
 
 Verzella found a number of published reports from the late 1800s to early 
    1900s that mention a whitish haze in the sky, or a gray or black dust on the 
    ice. But Nordenskiold “was the first to explicitly draw attention to the 
    haze phenomenon” during his 1883 expedition to Greenland, the researchers 
    concluded.
 
 Even during an earlier expedition in 1870, Nordenskiold observed “a fine 
    dust, gray in color, and, when wet, black or dark brown, is distributed over 
    the inland ice in a layer which I should estimate at from 0.1 to 1 
    millimeter.”
 
 He found that the dust contained “metallic iron, which could be drawn out by 
    the magnet, and which, under the blowpipe, gave a reaction of cobalt and 
    nickel.” He believed it to be a “cosmic dust” possibly from meteors. 
    However, the concentration of metallic iron, nickel and cobalt made it much 
    more likely that the origin was industrial pollution generated at 
    mid-latitudes.
 
 Last year, other researchers found that the dust is present in ice core 
    samples. “Recent Greenland ice cores show a rapid rise in anthropogenic soot 
    and sulfate that began in the late 1800s, but with peak sulfate levels in 
    the 1970s, and peak soot between 1906 and 1910,” Garrett and Verzella say in 
    their study. A higher composition of sulfate suggests oil combustion, while 
    higher soot suggests coal combustion, consistent with the main sources of 
    pollution generated in the 20th versus 19th centuries.
 
 Early Arctic Warming
 In a 2006 study, Garrett concluded that particulate pollution from 
    mid-latitudes aggravates global warming in the Arctic. Did it do the same 
    back in the 1800s?
 
 “It is reasonable that the effect of particulate pollution on Arctic climate 
    may have been greater 130 years ago than it is now, because during the 
    Industrial Revolution, technologies were dirtier than they are now,” says 
    Garrett. “Of course, today carbon dioxide emissions are greater and have 
    accumulated over the last century, so the warming effect due to carbon 
    dioxide is much greater today than 100 years ago.”
 
 In fact, after fossil-fuel combustion became more efficient in the 
    mid-1900s, the levels of particulate pollution in the Arctic dropped 
    dramatically from levels earlier in the century. However, Garrett believes 
    that we might be seeing another increase due to higher emissions from 
    developing industrial countries such as China.
 
 SOURCE: University of Utah
 |