GE to Study Impact of High Solar Energy Penetration on
the Grid
NISKAYUNA, N.Y., Apr 21, 2010 -- BUSINESS WIRE
With energy experts forecasting substantial increases in solar power in
the coming decades, GE researchers are working with Arizona Public
Service, the state's largest electric utility, to understand how large
amounts of solar can best be integrated into today's grid.
APS, along with four partners, including GE, recently was awarded a $3.3
million High Penetration Solar Deployment grant from the U.S. Department
of Energy. The comprehensive first-of-its-kind study, which was approved
earlier this month by the Arizona Corporation Commission, will take
place in Flagstaff, Arizona. The team will help identify methods and
technologies to optimize grid reliability and efficiency with the high
concentration of distributed solar generation.
"APS's solar demonstration project provides a great opportunity to
understand the grid's future needs as renewable energy resources like
solar become a larger part of the nation's overall energy portfolio,"
said Kathleen O'Brien, Project Leader for GE and an Electrical Engineer
in GE's Smart Grid Lab. "Much of the focus has been on new cell
developments and system improvements to make solar more cost
competitive, but the larger question is how to reliably integrate the
higher penetrations of solar power expected. Through this study, we hope
to gain more insight and answers."
Specifically, O'Brien said that her team wants to understand:
-- What are the current and new technologies that are needed to
accommodate higher penetrations of solar? And at what point will they be
needed?
-- What changes can utility controllers expect in how they manage power?
-- How could the stability of the distribution network be affected by
fluctuating solar power production?
-- How can the new advanced grid features of the GE Solar Inverter
improve system stability and power quality?
The utility plans to integrate 1.5 megawatts of solar power on a single
"feeder", or energy distribution area. Approximately 600 kilowatts will
come from residential photovoltaic (PV) rooftop installations; 400
kilowatts will be generated from installations on commercial business
properties; and 500 kilowatts will be incorporated from a utility-scale
solar park installation.
The project team will leverage GE's renewable energy and utilize grid
integration expertise as well as GE's energy power electronics. GE's
Brilliance* solar inverter will be used by the utility to handle power
conversion from the utility-scale solar installation. This inverter was
built from the same platform of power electronics, monitoring and
controls that GE uses to enhance wind energy grid integration. It's
SunIQ* grid features were developed to make solar plants "smarter,"
coordinating the components of a large-scale installation to behave
similar to a conventional power plant. In addition to providing the
solar inverter, GE researchers will be collecting data and doing power
systems analysis on how the large influx of solar into this distribution
network impacts the grid.
According to the U.S. Department of Energy, solar installations in the
U.S. are expected to exceed 6,000 MW by 2010, more than triple what the
installed base was just two years ago. What's particularly striking is
just how rapidly solar power is growing. The cumulative annual growth
rate in solar is expected to be as high as 41% through 2012, more than
double a healthy 22% growth rate in wind power.
In recent years, the growth in renewable energy resources such as solar
already has exceeded more traditional hydrocarbon sources. According to
New Energy Finance, a leading provider of industry information and
analysis to investors, corporations and governments, demand for solar
energy has grown about 30% per year over the past 15 years, while
hydrocarbon energy demand typically grows less than 2% a year. This
growth, and the substantial growth forecasted for solar in the future,
point to an energy portfolio that is more diverse and more renewable
energy intensive.
As the world seeks cleaner, more efficient ways to generate power,
distributed energy systems, or localized power systems where power is
generated and delivered in close proximity to its customers, have great
potential for enabling a higher penetration of clean, renewable power
sources into the electrical distribution network.
Because distributed energy systems are often decentralized from the
larger electric grid network, renewable energy can assume a much larger
part of the overall energy portfolio for a given system. That is why the
solar demonstration project with APS provides such an excellent case
study for simulating how larger amounts of solar power impact the grid
infrastructure. Although 1.5 megawatts of solar by itself is not a lot
of power, it will represent a substantial amount for the study area's
distributed energy system. GE researchers will be collecting and
analyzing data over the next couple of years, with a full report to be
completed by 2013.
Testing and evaluation is funded in part by the American Recovery and
Reinvestment Act of 2009.
About GE Global Research
GE Global Research is the hub of technology development for all of GE's
businesses. Our scientists and engineers redefine what's possible, drive
growth for our businesses and find answers to some of the world's
toughest problems.
We innovate 24 hours a day, with sites in Niskayuna, New York;
Bangalore, India; Shanghai, China; and Munich, Germany. Visit GE Global
Research on the web at www.ge.com/research. Connect with our
technologists at http://edisonsdesk.com and twitter.com/edisonsdesk.
SOURCE: GE
News Provided By
 |