From: The Earth Institute at Columbia University, via ScienceDaily
Published June 29, 2014 08:19 AM

The link between oceanic currents and climate

 

For decades, climate scientists have tried to explain why ice-age cycles became longer and more intense about 900,000 years ago, switching from 41,000-year cycles to 100,000-year cycles. In a new study in the journal Science, researchers found that the deep ocean currents that move heat around the globe stalled or even stopped, possibly due to expanding ice cover in the north. The slowing currents increased carbon dioxide storage in the ocean, leaving less in the atmosphere, which kept temperatures cold and kicked the climate system into a new phase of colder but less frequent ice ages, they hypothesize.

"The oceans started storing more carbon dioxide for a longer period of time," said Leopoldo Pena, the study's lead author, a paleoceanographer at Columbia University's Lamont-Doherty Earth Observatory. "Our evidence shows that the oceans played a major role in slowing the pace of ice ages and making them more severe."

The researchers reconstructed the past strength of earth's system of deep-ocean currents by sampling deep-sea sediments off the coast of South Africa, where powerful currents originating in the North Atlantic Ocean pass on their way to Antarctica. How vigorously those currents moved in the past can be inferred by how much North Atlantic water made it that far, as measured by isotope ratios of the element neodymium bearing the signature of North Atlantic seawater. Like a tape recorder, the shells of ancient plankton incorporate this seawater signal through time, allowing scientists to approximate when the currents grew stronger and weaker off South Africa.

They confirmed that over the last 1.2 million years, the conveyor-like currents strengthened during warm periods and weakened during ice ages, as previously thought. But they also discovered that at about 950,000 years ago, ocean circulation weakened significantly and stayed weak for 100,000 years; during that period the planet skipped an interglacial -- the warm interval between ice-ages--and when the system recovered it entered a new phase of longer, 100,000-year ice age cycles. After this turning point, the deep ocean currents remain weak during ice ages, and the ice ages themselves become colder, they find.

"The Global Conveyer Belt for Heat" represents in a simple way how ocean currents carry warm surface waters from the equator toward the poles and moderate global climate. This global circuit takes up to 1,000 years to complete. This illustration shows the generalized model of this thermohaline circulation: 'Global Conveyor Belt.' Cold deep high salinity currents circulating from the north Atlantic Ocean to the southern Atlantic Ocean and east to the Indian Ocean. Deep water returns to the surface in the Indian and Pacific Oceans through the process of upwelling. The warm shallow current then returns west past the Indian Ocean, round South Africa and up to the North Atlantic where the water becomes saltier and colder and sinks starting the process all over again. Image credit: NASA.

Read more at ScienceDaily.

2014©. Copyright Environmental News Network

http://www.enn.com/climate/article/47539