Circadian rhythm of genes in brain changes with aging, research shows

 

Examination of thousands of genes from nearly 150 human brains shows the circadian rhythm of gene activity changes with aging, according to a first-of-its-kind study conducted by researchers at the University of Pittsburgh School of Medicine. The findings, published online in the Proceedings of the National Academy of Sciences, suggest also that a novel biological clock begins ticking only in the older brain.

A 24-hour circadian rhythm controls nearly all brain and body processes, such as the sleep/wake cycle, metabolism, alertness and cognition, said senior investigator Colleen McClung, Ph.D., associate professor of psychiatry, Pitt School of Medicine. These daily activity patterns are regulated by certain genes that are found in almost all cells, but have rarely been studied in the human brain.

“Studies have reported that older adults tend to perform complex cognitive tasks better in the morning and get worse through the day,” Dr. McClung said. “We know also that the circadian rhythm changes with aging, leading to awakening earlier in the morning, fewer hours of sleep and less robust body temperature rhythms.”

In addition, the presence of gene changes or “molecular aging” in the brain had been previously shown by senior co-investigator Etienne Sibille, Ph.D., formerly a professor of psychiatry at Pitt School of Medicine and now the Campbell Family Chair in Clinical Neuroscience at the Centre for Addiction and Mental Health, University of Toronto. Both teams decided to look at the effects of normal aging on molecular rhythms in the human prefrontal cortex, an area of the brain involved in learning, memory and other aspects of cognitive performance.

Lipoic_Acid_Restores_Synchronizes_Circadian_Rhythm_Aging_Animals

The team examined brain samples of 146 people with no history of mental health or neurological problems whose families had donated their remains for medical research and for whom the time of death was known. They categorized the brains depending on whether they had come from a person younger than 40 or older than 60, and used a newly developed statistical technique to analyze two tissue samples from the prefrontal cortex for rhythmic activity, or expression, of thousands of genes.

Using the information they had about the time of death, they identified 235 core genes that make up the molecular clock in this part of the brain.

“As we expected, younger people had that daily rhythm in all the classic ‘clock’ genes,” Dr. McClung said. “But there was a loss of rhythm in many of these genes in older people, which might explain some of the alterations that occur in sleep, cognition and mood in later life.”

 



!!! UPDATE !!!

Epitalon has been shown to help regulate endocrine activity in the body. Hormones are responsible for many key signalling circuits between cells which on a larger scale comprise the functions of large organs. For example, melatonin is a hormone which regulates the circadian rhythm, an internal biological clock. Endogenous melatonin production has been observed to decrease with ageing. A 2007 study of Epitalon administration in elderly patients found that the compound helped to restore pineal gland function & increased release of melatonin, which is purported to be the mechanism behind the restoration of sleep.

bioluma_box600__oceanslab Epitalon


 

To their surprise, the team also found a set of genes that gained rhythmicity in older individuals.

This information could ultimately be useful in the development of treatments for cognitive and sleep problems that can occur with aging, as well as a possible treatment for “sundowning,” a condition in which older individuals with dementia become agitated, confused and anxious in the evening.

“Since depression is associated with accelerated molecular aging, and with disruptions in daily routines, these results also may shed light on molecular changes occurring in adults with depression,” said Dr. Sibille.

In next steps, the researchers will explore the function of the brain’s circadian-rhythm genes in lab and animal models, as well as see if they are altered in people who have psychiatric or neurological illnesses.

 

 


Source(s):

[1] sciencedaily.com

[2] Cho-Yi Chen, Ryan W. Logan, Tianzhou Ma, David A. Lewis, George C. Tseng, Etienne Sibille, and Colleen A. McClung. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. PNAS, December 2015 DOI: 10.1073/pnas.1508249112

[3] upmc.com

© 2009 healthfreedoms.org ALL RIGHTS RESERVED

http://www.healthfreedoms.org/circadian-rhythm-of-genes-in-brain-changes-with-aging-research-shows/